Меню

Физические упражнения зоны максимальной мощности

Зоны относительной мощности мышечной работы

Зона относительной мощности мышечной работы — период, на протяжении которого совершаемая физическая активность с заданными параметрами мощности и энергетического порога будет сохранять свою интенсивность.

На основании соотношения между тремя путями ресинтеза АТФ: гликолитического, креатинфосфатного и аэробного, — которые используются при выполнении того или иного вида физической активности для энергообеспечения мышечной деятельности, выделяют четыре зоны:

I зона — зона максимальной мощности. Физическая активность длится до 20 секунд.

II зона — зона субмаксимальной мощности. Нагрузка длится от 20 секунд до 5 минут.

III зона — зона большой мощности с длительностью физической нагрузки от 5 минут до получаса.

IV зона — зона умеренной мощности. Работа длится более получаса.

В некоторых видах спорта: футболе, баскетболе, бадминтоне, теннисе и некоторых других — мощность многократно меняется.

Возраст, пол, другие индивидуальные особенности спортсмена, объективные законы мышечного сокращения определяют структуру зон.

I зона

Прыжок с шестом, метание копья, толкание ядра и некоторые другие легкоатлетические дисциплины, рывок штанги в тяжелой атлетике, отдельные упражнения в спортивной гимнастике относятся к первой зоне. Физическая нагрузка выполняется в период, не превышающий 20 секунд.

Аденозинтрифосфат образуется в ходе анаэробных путей. В первые секунды работы используется креатинфосфатный путь ресинтеза. В конце физической нагрузки происходит замещение креатинфосфатной реакции гликолитическим путем, или гликолизом.

II зона

Бег на 800 метров, брасс на 50 метров, трековые велогонки, забег на 1000 метров в шорт-треке — примеры физической активности, выполняемой во второй зоне. Длительность совершаемой физической нагрузки составляет от 20 секунд до 5 минут.

EPOC, или избыточное потребление кислорода после нагрузки, — 20 литров. Это самый высокий показатель среди всех зон.

В первые минуты после начала физической нагрузки активируется креатинфосфатный путь ресинтеза АТФ, который впоследствии замещается гликолитическим путем. В конце организм для получения энергии использует клеточное дыхание.

III зона

Основные поставщики энергии — гликолиз и клеточное дыхание. В самом начале работы вклад вносит креатинфосфатная реакция.

К третьей зоне относятся виды физической активности, длящиеся от 5 минут до получаса. Это забег на 10000 метров у мужчин в конькобежном спорте, гонки в биатлоне и другие.

IV зона

Спортивная ходьба на 20 и 50 км, марафонский бег, масс-старт на 50 км в лыжных гонках и некоторые другие виды физической активности относятся к четвертой зоне.

АТФ образуется в ходе аэробного пути ресинтеза.

Подготовка спортсменов к соревнованиям

Во время тренировочного периода необходимо ориентироваться на преобладание той или иной зоны в практикуемом спортсменом виде спорта. Учитывая специфику, следует выбирать те физические упражнения, нагрузки, которые будут развивать пути ресинтеза АТФ, играющие основную роль в энергообеспечении функционирования мышц.

Источник

Зоны мощности в спортивных упражнениях

С ориентацией на мощность и расход энергии были установлены следующие зоны относительной мощности в циклических видах спорта:

Максимальная степень мощности. В этой зоне продолжительность работы достигает всего лишь от 20 до 25 секунд. В эту категорию попадают такие виды спорта как: бег на 100 и 200 метров; Плавание на 50 метров; Велогонка на 200 метров с хода, при чём эти физические упражнения делаются при рекордном исполнении.

Субмаксимальная степень мощности. Эта степень немного ниже максимальной, и поэтому продолжительность работы при таких нагрузках может быть от 25 секунд до 3-5 минут. Сюда попадают: бег на 400, 800, 100, 1500 метров; плавание на 100, 200, 400 метров; бег на коньках на 500, 1500, 300 метров; а также велогонки на 300, 1000, 2000, 3000, 4000 метров.

Большая степень мощности. Продолжительность работы достигает от 3-5 минут до 30 минут. Этой степени соответствуют: бег на 2, 3, 5, 10 километров; плавание на 800, 1500 метров; бег на коньках на 5, 10 километров; велогонки на 100 километров и более.

Умеренная степень мощности. Продолжительность работы достигает даже свыше 30 минут! Физические упражнения, которые соответствуют этой степени мощности это: бег на 15 километров и более; спортивная ходьба на 10 километров и более; бег на лыжах на 10 километров и более, а также велогонки на 100 километров и более.

Отсюда ясно проявляется закономерность: чем больше нагрузка, чем больше степень мощности, затрачиваемой на выполнение данных физических упражнений, тем меньше по продолжительности (минуты, секунды) и по количеству (например в метрах) спортсмен может работать на данном уровне нагрузок. И действительно. Как говорится, тише едешь, дальше будешь.

Например, если при беге трусцой спортсмен пробегает километры и может держать темп очень долго, то на спринтерских дистанциях пробегаются всего лишь сотни метров и за меньшие промежутки времени. Или, например если штангист может небольшой вес держать минутами/десятками минут, то большие нагрузки буквально 2-5 секунд.

Итак, эти четыре зоны относительной мощности предполагают деление множества различных дистанций на четыре группы: короткие, средние, длинные, сверхдлинные.

Так в чём же суть разделения физических упражнений по зонам относительной мощности и как это связанно с энергозатратами при физических нагрузках разной интенсивности?

Во-первых, мощность работы прямо зависит от её интенсивности, что было сказано выше. Во-вторых, высвобождение и расход энергии преодоления дистанций, входящих в различные зоны мощности, имеют существенно отличающиеся физиологические характеристики, которые представлены в таблице 3.

Зона относительной мощности работы

От 25 с до 3-5 мин

От 3-5 до 30 мин

Возрастает к максимальной

Вентиляция лёгких и кровообращение

Теперь перейдём к более детальному рассмотрению данных, приведённых в таблице.

Зона максимальной мощности: в её пределах может выполняться работа, требующая предельно быстрых движений. Ни при какой другой работе не освобождается столько энергии, сколько при работе с максимальной мощностью. Кислородный запас в единицу времени самый большой, потребление организмом кислорода незначительно. Работа мышц совершается почти полностью за счёт бескислородного (анаэробного) распада веществ. Практически весь кислородный запрос организма удовлетворяется уже после работы, т.е. запрос во время работы почти равен кислородному долгу. Дыхание незначительно: на протяжении тех 10 – 20 секунд, в течение которых совершается работа спортсмен либо не дышит, либо делает несколько коротких вдохов. Зато после финиша его дыхание ещё долго усиленно, в это время погашается кислородный долг. Из-за кратковременности работы кровообращение не успевает усилиться, частота же сердечных сокращений значительно возрастает к концу работы. Однако минутный объём крови увеличивается ненамного, потому что не успевает вырасти систолический объём сердца.

Зона субмаксимальной мощности: в мышцах протекают не только анаэробные процессы, но и процессы аэробного окисления, доля которых увеличивается к концу работы из-за постепенного усиления кровообращения. Интенсивность дыхания также всё время возрастает до самого конца работы. Процессы аэробного окисления хотя и возрастают на протяжении работы, всё же отстают от процессов бескислородного распада. Всё время прогрессирует кислородная задолженность. Кислородный долг к концу работы больше, чем при максимальной мощности. В крови происходят большие химические сдвиги.

Читайте также:  Домашние тренировки по самообороне

К концу работы в зоне субмаксимальной мощности резко усиливается дыхание и кровообращение, возникает большой кислородный долг и выраженные сдвиги в кислотно-щелочном и водно-солевом равновесии крови. Это может вызвать повышение температуры крови на 1 – 2 градуса, что может повлиять на состояние нервных центров.

Зона большой мощности: интенсивность дыхания и кровообращения успевает уже в первые минуты работы возрасти до очень больших величин, которые сохраняются до конца работы. Возможности аэробного окисления более высоки, однако они всё же отстают от анаэробных процессов. Сравнительно большой уровень потребления кислорода несколько отстаёт от кислородного запроса организма, поэтому накопление кислородного долга всё же происходит. К концу работы он будет значителен. Значительны и сдвиги в химизме крови и мочи.

Зона умеренной мощности: это уже сверхдлинные дистанции. Работа умеренной мощности характеризуется устойчивым состоянием, с чем связано усиление дыхания и кровообращения пропорционально интенсивности работы и отсутствие накопления продуктов анаэробного распада. При многочасовой работе наблюдается значительный общий расход энергии, сто уменьшает углеводные ресурсы организма.

Итак, в результате повторных нагрузок определённой мощности на тренировочных занятиях организм адаптируется к соответствующей работе благодаря совершенствованию физиологических и биохимических процессов, особенностей функционирования систем организма. Повышается КПД при выполнении работы определенной мощности, повышается тренированность, растут спортивные результаты.

Источник

Классификация зон мощности

Классификация зон мощности.

Скачать:

Вложение Размер
klassifikatsiya_zon_moshchnosti.docx 41.51 КБ

Предварительный просмотр:

1. Физиологическая характеристика динамической циклической работы различной относительной мощности

В 1937 г. B.C. Фарфель подверг математическому анализу десять, а затем и двадцать пять лучших достижений мирового масштаба в различных видах циклической работы спортивного характера. Оказалось, что мощность работы и ее длительность находятся в достаточно сложной зависимости и не являются просто обратно пропорциональными. Длительность работы возрастает в большей мере, чем уменьшается ее мощность (скорость). Отложив по оси ординат логарифмы скорости легкоатлетического бега, а по оси абсцисс — логарифмы рекордного времени, B.C. Фарфель обнаружил четыре отрезка прямых. Причем точки перелома соответствуют на абсциссе моментам времени 25-30 с, 3-5 мин и 30-40 мин.

По классификации, разработанной В.С. Фарфелем, следует различать циклические упражнения: максимальной мощности, в которых длительность работы не превышают 20-30 секунд (спринтерский бег до 200 м, гит на велотреке до 200 м, плавание до 50 м и др.); субмаксимальной мощности, длящиеся 3-5 минут (бег на 1500 м, плавание на 400 м, гит на треке до 1000 м, бег на коньках до 3000 м, гребля до 5 минут и др.); большой мощности, возможное время выполнения которых ограничивается 30 — 40 минутами (бег до 10000 м, велогонки до 50 км, плавание 800 м — женщины, 1500 м — мужчины, спортивная ходьба до 5 км и др.), и умеренной мощности которую спортсмен может удерживать от 30-40 минут до нескольких часов (шоссейные велогонки, марафонские и сверхмарафонские пробеги, др.)

Критерий мощности, положенный в основу классификации циклических упражнений, предложенной В.С. Фарфелем, является весьма относительным, на что указывает и сам автор. Действительно, мастер спорта проплывает 400 метров быстрее четырёх минут, что соответствует зоне субмаксимальной мощности, новичок же проплывает эту дистанцию за 6 минут и более, т.е. фактически совершает работу, относящуюся к зоне большой мощности.

Несмотря на определённую схематичность разделения циклической работы на 4 зоны мощности, оно вполне оправдано, поскольку каждая из зон определённое воздействие на организм и имеет свои отличительные физиологические проявления. Вместе с тем, для каждой зоны мощности характерны общие закономерности функциональных изменений, мало связанные со спецификой различных циклических упражнений. Это даёт возможность по оценке мощности работы создать общее представление о влиянии соответствующих нагрузок на организм спортсмена.

Многие функциональные изменения, характерные для различных зон мощности работы, в значительной степени связаны с ходом энергетических превращений в работающих мышцах.

Как известно, освобождение энергии для работы мышц обеспечивается анаэробными и аэробными реакциями. Непосредственным источником энергии для мышечных сокращений является распад АТФ (анаэробная реакция), происходящий в результате взаимодействия этого вещества с миозином. Но запасы АТФ в мышцах ограниченны и длительная работа возможна только при условии одновременного ресинтеза креатинфосфата и гликогенолиза. Однако один анаэробный ресинтез АТФ не может обеспечить выполнение продолжительной работы в связи с тем, что он сопровождается накоплением больших количеств продуктов неполного обмена и, в частности, молочной кислоты, что снижает активность мышц и может привести к прекращению работы. Поэтому для выполнения длительной работы необходимы аэробные процессы, т.е. клеточное дыхание. Оно находится в зависимости от кислородного обеспечения организма, увеличивающегося при физической нагрузке за счёт усиления работы сердечно – сосудистой и дыхательной систем (до определённого предела). Доля участия анаэробных и аэробных процессов при циклической работе определяется её мощностью. Это, однако, не означает, что с переходом от одной зоны мощности к другой, имеют место такие же резкие переходы в характере энергетического обеспечения мышечной деятельности. Их в действительности нет, но при переходе от одной зоны мощности к другой происходит почти линейное снижение объёма анаэробного обеспечения работающих мышц и соответствующее повышение объёма аэробных превращений в организме. При работе умеренной мощности достигается относительное уравновешивание анаэробных и аэробных процессов.

Физиологические характеристики работ разной относительной мощности (по В.С. Фарфелю, Баннистеру, Тейлору, Н.И. Волкову, Робинсону, В.М. Зациорскому)

Зона относительной мощности работы

Предельное время работы

От 20 с до 5 мин

Общий расход энергии (кДж)

Отношение потребления кислорода к кислородному запросу

Кислородный долг (дм 3)

Подобный анализ лучших результатов в других видах циклических спортивных упражнений показал, что аналогичная закономерность обнаруживается и в плавании, и в беге на коньках, и в лыжных гонках.

Каждой из этих зон относительной мощности (интенсивности) свойственны свои характерные особенности (табл. 2).

Физиолого-биохимическая характеристика работы различной мощности (интенсивности)

Зоны мощности

От 20-30 с до 3-5 мин

От 3-5 мин до 30-40 мин

Удельный расход энергии

макс. До 4 ккал/с

Общий расход энергии

До 1000 ккал и более

Минутный запрос Ог, л/мин

Рабочее потребление О 2

5-5,5 л/мин к концу работы

Относительное рабочее потребление О 2 к О 2 -запросу

Отн. О 2 -долг к О 2 -запросу,

Абсолютный О 2 -долг, л

Наличие устойчивого состояния по О 2

К концу работы по типу «кажущегося»

«Кажущееся» устойчивое состояние

Истинное устойчивое состояние

Минутный объем дыхания, л/мин

К концу работы до 120-140

Максимально доступный, 140-160

Ниже максимального, 80-100

Работа сердца (ЧСС, уд/мин)

160-170 после работы

Нарастает до максимума, 190-200

Близка к максимуму, до 200

Ниже максимума, 150-180

АТФ, КрФ, гликолиз

Смешанный аэробно-анаэробный, гликолиз

Аэробный, с использованием углеводов и жиров

Концентрация молочной кислоты, мг%

Незначительно в кислую сторону

Содержание сахара в 100 мл крови

Нормальное или незначительно повышено

Нормальное или слегка повышено

Снижено до 40-50 мг%

Осмотическое давление в крови

2. Зона максимальной мощности

К максимальной мощности относится динамическая циклическая работа длительностью не более 20-30 с: легкоатлетический бег на 60, 100, 200 м; плавание 50 м; велогонка на 500 м.

Данная мощность работы характеризуется достижением предельной физической возможности спортсмена. Для её осуществления необходима максимальная мобилизация энергетического обеспечения в скелетной мускулатуре, что связано исключительно с анаэробными процессами. Практически вся работа осуществляется за счёт распада макроэргов и только частично – гликогенолиза, поскольку известно, что уже первые сокращения мышц сопровождаются образованием в них молочной кислоты.

Длительность работы, например, в беге на 100 м меньше времени кругооборота крови. Уже это свидетельствует о невозможности достаточного обеспечения кислородом работающих мышц.

Из–за кратковременности работы врабатывание вегетативных систем практически не успевает завершится. Можно говорить только о полном врабатывание мышечный системы по локомоторным показателям (нарастание скорости, темпа и длинны шага после старта).

В связи с малым временем работы функциональные сдвиги в организме невелики, причём некоторые из них увеличиваются после финиша.

Работа максимальной мощности вызывает незначительные изменения в составе крови и мочи. Наблюдается кратковременное повышение в крови содержания молочной кислоты (до 70-100 мг %), небольшое повышение процента гемоглобина за счёт выхода в общую циркуляцию депонированной крови, некоторое увеличение содержания сахара. Последнее обусловлено больше эмоциональным фоном (предстартовое состояние), нежели самой физической нагрузкой. В моче могут быть обнаружены следы белка. Частота сердечных сокращений после финиша доходит до 150-170 и более ударов в минуту, артериальное давление повышается до 150-180 мм. рт. ст.

Расчетный (на 1 мин) кислородный запрос достигает 40 и более литров. Однако вследствие кратковременности и известной функциональной инертности вегетативных систем по сравнению с двигательным аппаратом в рабочем периоде имеет место своеобразный «разрыв» между уровнем интенсивности функционирования двигательного аппарата и вегетативными системами. В силу этого работа протекает главным образом в анаэробных условиях, а существенное повышение функциональной активности вегетативных систем обнаруживается после окончания работы. Если при пробегании 100 м за 12 с бегун успевает провентилировать всего 5-6 л, то в первые минуты восстановительного периода легочная вентиляция возрастает до 60-70 л/мин, а частота дыхания по сравнению с покоем увеличивается в 4-5 раз.

Потребление кислорода в первую минуту восстановления после бега на 100 м за 12 с достигало 2-3 л/мин (это напоминает проявление феномена Линдгарда, когда сдвиги функций после работы выше рабочих). Из-за кратковременности работы существенные сдвиги в составе крови обнаруживаются главным образом после работы. Накопившаяся во время работы молочная кислота после бега усиленно диффундирует в кровь, и через 1-2 мин после финиша ее концентрация с 10-20 мг% (1-2 ммоль/л) в покое увеличивается до 80 мг%, а на 5-6-й мин восстановления — до 100 мг% (10-12 ммоль/л) и более. В связи со значительной послерабочей гипервентиляцией и усиленным «вымыванием» СО2 дыхательный коэффициент может достигать 1,5 и даже 2,0. Уровень сахара в крови существенно не изменяется. Частота сердечных сокращений возрастает к концу дистанции до 160 уд/мин, а в 1-ю мин восстановления отмечены величины до 180 и более уд/мин.

Энерготраты при мышечной работе максимальной интенсивности незначительны, но удельный расход энергии достигает 4-8 ккал/с, а общий — до 80 ккал. Главные поставщики энергии — АТФ и КФ, т.е. преобладает алактатный анаэробный процесс, тогда как гликолиз существенно не активизируется. Потребление кислорода во время работы не превышает 5-10% от кислородного запроса, и, соответственно, относительный кислородный долг составляет 90-95%. Восстановительный период по потреблению О2 равен 30-40 мин.

К основным механизмам утомления следует отнести: исчерпание клеточных резервов макроэргов, уменьшение активности двигательных зон ЦНС, обусловленных максимальной афферентной импульсацией от проприорецепторов мышц, снижение физиологической лабильности моторных центров и развитие торможения в них вследствие мощной эфферентной импульсации к скелетным мышцам и снижение сократительной способности мышечных волокон вследствие анаэробного характера их работы.

3. Зона субмаксимальной мощности

Временной диапазон длительности работы данной мощности находится в пределах от 20-30 с до 3-5 мин. В этих временных рамках совершается легкоатлетический бег на дистанции 400, 800, 1000, 1500 м; плавание на 100, 200, 400 м; бег на коньках на 500, 1500 м; велогонки на 1000, 2000 м; гребля на 200,500 м.

Характерно, что при незначительных различиях в средней скорости преодоления этих дистанций по отношению к максимальной зоне мощности длительность работы субмаксимальной мощности существенно возрастает. Последнее обстоятельство объясняет причины большой напряженности функционирования многих систем организма во время такой работы. В физиологическом смысле это объясняется следующим:

а) работа выполняется на пределе работоспособности ЦНС и двигательного аппарата;

б) работа осуществляется на предельно доступной скорости врабатывания по показателям дыхательной и, особенно, сердечно-сосудистой систем;

в) работа протекает в условиях значительных сдвигов во внутренней среде организма ввиду максимальной мобилизации гликолитического механизма энергообеспечения, накопления молочной кислоты, снижения рН крови.

Кислородный запрос может достигать 25 л/мин. Максимальное рабочее потребление О2 (до 5-5,5 л/мин) достигается лишь в конце работы в зоне 3-5-минутного интервала времени, в силу этого образуется суммарный кислородный долг до 19-25 л (предельных для человека величин), составляя 55-85% кислородного запроса. Все это обусловливает деятельность кислород-транспортной и утилизирующей систем (систем дыхания, крови, кровообращения, утилизации кислорода) на максимально доступном уровне. К концу работы легочная вентиляция возрастает до 120-140 л/мин, а частота сердечных сокращений (ЧСС), как правило, выходит на уровень 190-200 уд/мин.

Характерным для этой зоны мощности является то, что некоторые функциональные сдвиги нарастают на протяжении всего периода работы, достигая предельных величин (содержание молочной кислоты в крови, снижение щелочного резерва крови, кислородная задолженность и др.).

Содержание молочной кислоты в крови после бега на короткие и средние дистанции (по Н.И. Волкову)

Молочная кислота (мг %)

Систолический объем крови у высокотренированных спортсменов увеличивается с 60-70 мл в покое до 150-210 мл на дистанции; при этом минутный объем крови достигает 30-40 л. Большая часть работы протекает в условиях, близких к анаэробным. Как следствие в крови накапливается значительное количество недоокисленных продуктов обмена веществ. Концентрация молочной кислоты возрастает в 15-20 раз от уровня покоя, достигая 200-280 мг на 100 мл крови, в результате чего щелочные резервы снижаются на 40-60%, а рН крови — до 7,0. Удельный расход энергии довольно высок (в пределах 1,5 ккал/с), а общий расход энергии достигает 450 ккал.

После работы субмаксимальной мощности функциональные сдвиги в организме ликвидируются в течение 2-3 часов. Быстрее восстанавливается артериальное давление. Частота сердечных сокращений и показатели газообмена нормализуются позже.

К основным механизмам утомления при работе субмаксимальной интенсивности можно отнести:

лимит мощности тканевых буферных систем;

угнетение деятельности нервных центров вследствие интенсивной афферентной импульсации с проприорецепторов скелетных мышц; сильное и длительное возбуждение двигательных нервных центров; недостаточное обеспечение мощи со стороны вегетативных систем; дефицит кислорода; накопление продуктов обмена веществ (молочной кислоты) и снижение сократительной способности мышц.

Все это целесообразно учитывать при решении вопроса начала специальной тренировки юных спортсменов в спортивных упражнениях субмаксимальной мощности.

4. Зона большой мощности

К циклической, динамической работе большой мощности, совершающейся в пределах от 3-5 до 30-40 мин, можно отнести следующие дистанции: легкоатлетический бег от 3 до 10 км включительно, греблю — от 1000 до 5000 м, бег на лыжах на 5-10 км, плавание на 800, 1500 м, бег на коньках на 5-10 км, велогонки от 10 до 20 км и т.п.

В этой зоне мощности работы, длящейся 30-40 минут, во всех случаях период врабатывания полностью завершается и многие функциональные показатели затем стабилизируются на достигнутом уровне, удерживаясь на нём до финиша.

Осуществление указанных видов мышечной деятельности характеризуется большой интенсивностью деятельности двигательного аппарата в сочетании с предельно доступной функциональной активностью вегетативных систем организма на протяжении значительного периода времени. Убедительным свидетельством уровня напряженности деятельности организма в этих условиях может служить рабочее потребление кислорода, достигающее 5-5,5 л/мин (т.е. уровня максимального потребления). При этом важно отметить, что минутный кислородный запрос равен 6-7 л. Иначе говоря, даже предельного рабочего потребления кислорода часто оказывается недостаточно для удовлетворения кислородного запроса. Такое устойчивое рабочее потребление кислорода получило в физиологии спорта название «ложное», или «кажущееся устойчивое состояние». Понятно, что высокое потребление кислорода может быть обеспечено весьма напряженной деятельностью всей системы кислородного транспорта. Поэтому ЧСС достигает предельных величин — 200 и более в 1 мин, ударный (систолический) объем крови возрастает до 180-200 мл, а минутный объем крови (МОК) соответственно увеличивается до 32-40 л/мин.

Высокой напряженностью характеризуется деятельность дыхательного аппарата. Например, минутный объем дыхания (МОД) во время работы поддерживается на уровне 120-140 л/мин. Наряду с увеличением объема и скорости кровотока в крови отмечается увеличение количества эритроцитов за счет выхода крови из депо. Суммарный кислородный долг (КД) достигает 12-20 л и более, а относительный кислородный долг составляет 50-20% от кислородного запроса. Содержание молочной кислоты в крови доходит до 100-200 мг% и более, то есть по сравнению с уровнем покоя возрастает в 10 и более раз, что сопровождается снижением щелочных резервов крови на 40-50%, а рН снижается до 7,2-7,0. Такого рода многообразные и существенные изменения гомеостаза нередко обусловливают возникновение по ходу работы своеобразных состояний, получивших название «мертвой точки» и «второго дыхания». Общий расход энергии в данной зоне мощности достигает 900 ккал, а удельный — 0,5-0,4 ккал/с. Восстановительные процессы достигают значительной длительности — до нескольких часов. К факторам, лимитирующим работоспособность и вызывающим утомление при работе большой мощности, можно отнести: предел функциональных возможностей сердечнососудистой системы и всей системы транспорта кислорода, длительно действующую гипоксию, перенапряжение нейроэндокринной системы регуляцию физиологических функций, угнетающее действие метаболических сдвигов во внутренней среде организма на ЦНС.

5. Зона умеренной мощности

В данной зоне мощности совершаются такие виды мышечной деятельности спортивного характера, как марафонский бег, бег на сверхдлинные дистанции различной величины; многочасовые сверхдлинные заплывы, лыжные гонки более чем на 10 км; велотуры, гребной марафон и т.п., то есть спортивные упражнения циклического характера длительностью от 30-40 мин и более.

Характерной особенностью динамической работы умеренной мощности является наступление истинного устойчивого состояния (А. Хилл). Под ним понимается равное соотношение между кислородным запросом и кислородным потреблением. В силу этого обстоятельства в процессе работы, протекающей в зоне умеренной интенсивности, в качестве энергетического источника весьма активно используются жиры. Величины потребления кислорода на сверхдлительных дистанциях всегда устанавливаются ниже их максимального значения (на уровне 70-80 %). Функциональные сдвиги в кардиореспираторной системе заметно меньше тех, которые наблюдаются при работе большой мощности. Частота сердечных сокращений, обычно, не превышает 150-170 ударов в минуту, минутный объём крови равен 15-20 литров, лёгочная вентиляция 50-60 л/минуту. Содержание в крови молочной кислоты в начале работы заметно повышается, достигая 80-100 мг %, а затем приближается к норме. Характерным для этой зоны мощности является наступление гипогликемии, обычно развивающийся спустя 30-40- минут от начала работы, при которой содержание сахара в крови к концу дистанции может уменьшаться до 50-60 мг %.

Необходимо заметить, что при нарушениях равномерности пробегания марафонских дистанций или во время работы преодоления подъёмов кислородное потребление несколько отстаёт от увеличившего кислородного запроса и возникает небольшой кислородный долг, который погашается при переходе на постоянную мощность работы. Кислородный долг у марафонцев также, обычно, возникает в конце дистанции, в связи с финишным ускорением.

Существенное значение для высокой работоспособности спортсменов имеет функция коркового слоя надпочечников. Недлительные интенсивные физические нагрузки вызывают повышенное образование глюкокортикоидов. При работе же умеренной мощности, по-видимому, в связи с её большой длительностью, после первоначального усиления происходит угнетение продукции этих гормонов (А. Виру). Причём, у менее подготовленных спортсменов эта реакция особенно выражена.

Естественно, что в этих условиях восстановительный период весьма длительный — в большей части случаев продолжается не менее 2-3 суток, если судить об этом по восстановлению исходного уровня работоспособности, а не какого-либо отдельно взятого показателя, например ЧСС, легочной вентиляции, содержания гликогена в работавших мышцах и т.д.

К факторам, ограничивающим работоспособность и вызывающим утомление при работе умеренной мощности, относятся: ухудшение функциональной подвижности нервных центров; истощение функциональных резервов эндокринной системы; весьма значительное снижение энергетических ресурсов; обильное потоотделение, сопровождающееся потерей значительного количества хлоридов, нарушением количественного соотношения ионов Na, Ca, К, что отражается на состоянии скелетной мускулатуры (появление судорог мышц), а также и ЦНС. Все это доказывает целесообразность организации дополнительного приема специальных питательных смесей в процессе прохождения дистанции. Весьма нередким явлением, особенно в условиях повышенной температуры и влажности воздуха, во время такой работы оказываются нарушение процессов терморегуляции вплоть до тепловых ударов (гипертермия до 39-40°С), потеря способности ориентации в пространстве. Все это должно учитываться при решении вопросов об использовании упражнений умеренной мощности при организации физкультурно-оздоровительной работы с лицами различного возраста.

Таким образом, мы рассмотрели физиолого-биохимическую характеристику динамической циклической работы различной относительной мощности. Теперь, зная показатели по физиологической нагрузке на отдельные системы и организм в целом, а также по относительной мощности работы, выполняемой спортсменом, можно планировать и проводить тренировки именно в том ключе, при котором необходимо повысить тренированность того или иного физического качества.

  1. В.А. Друзь. «Спортивная тренировка и организм» — Киев, «Здоровья», 1988г, 123с;
  2. В.А. Запорожанов. «Контроль в спортивной тренировке» — Киев, «Здоровья», 1988г, 139с;
  3. В.В. Щербачёв, В.В Смирнов. «Секреты здоровья и сила» — Киев, «Здоровья», 1990г, 76с;
  4. Л.Я. Иващенко, И.П. Страпко. «Самостоятельное занятие физическими упражнениями» — Киев, «Здоровья», 1988г, 155с;
  5. С.Н. Филь, В.П. Пешков. «Профессиональная подготовка студентов» — Киев,
  6. Фомин Н.А. Физиология человека. – М.: Просвещение; Владос, 1995.- 416 с.
  7. Х. Кёлер. «Упражнения на выносливость» — Москва, «Физкультура и спорт», 1984, 48с;
  8. Я.М. Коц. «Спортивная физиология» — Москва, «Физкультура и спорт», 1986г, 239с;

Источник